機械学習基礎理論独習

誤りがあればご指摘いただけると幸いです。数式が整うまで少し時間かかります。リンクフリーです。

勉強ログです。リンクフリーです
目次へ戻る

PRML演習問題 2.46(基本) www

問題

(2.158)積分を計算し(2.159)になることを確かめよ。

参照

\begin{eqnarray}
p(x|\mu,a,b)&=&\int_0^\infty{\mathcal N}(x|\mu,\tau^{-1}){\rm Gam}(\tau|a,b){\rm d}\tau\tag{2.158}\\
&=&\int_0^\infty\frac{b^ae^{(-b\tau)}\tau^{a-1}}{\Gamma(a)}\left(\frac{\tau}{2\pi}\right)^{1/2}\exp\left(-\frac{\tau}{2}(x-\mu)^2\right){\rm d}\tau\\
&=&\frac{b^a}{\Gamma(a)}\left(\frac{1}{2\pi}\right)^{1/2}\left(b+\frac{(x-\mu)^2}{2}\right)^{-a-1/2}\Gamma(a+1/2)
\end{eqnarray}

\begin{eqnarray}
{\rm St}(x|\mu,\lambda,\nu)=\frac{\Gamma(\nu/2+1/2)}{\Gamma(\nu/2)}\left(\frac{\lambda}{\pi\nu}\right)^{1/2}\left(1+\frac{\lambda(x-\mu)^2}{\nu}\right)^{-\nu/2-1/2}\tag{2.159}
\end{eqnarray}

解答

(2.158)を計算します。

\begin{eqnarray}
p(x|\mu,a,b)&=&\int_0^\infty{\mathcal N}(x|\mu,\tau^{-1}){\rm Gam}(\tau|a,b){\rm d}\tau\\
&=&\int_0^\infty\frac{b^ae^{(-b\tau)}\tau^{a-1}}{\Gamma(a)}\left(\frac{\tau}{2\pi}\right)^{1/2}\exp\left(-\frac{\tau}{2}(x-\mu)^2\right){\rm d}\tau\\
&=&\frac{b^a}{\Gamma(a)}\left(\frac{1}{2\pi}\right)^{1/2}\int_0^\infty e^{(-b\tau)}\tau^{a-1}\tau^{1/2}\exp\left(-\frac{\tau}{2}(x-\mu)^2\right){\rm d}\tau\\
&=&\frac{b^a}{\Gamma(a)}\left(\frac{1}{2\pi}\right)^{1/2}\int_0^\infty \tau^{a-1/2}\exp\left(-\tau\left(b+\frac{1}{2}(x-\mu)^2\right)\right){\rm d}\tau\tag{1}
\end{eqnarray}

z=\tau\left(b+\dfrac{1}{2}(x-\mu)^2\right)とおくと、以下が成り立ちます。

\begin{eqnarray}
\tau=\dfrac{1}{b+\dfrac{1}{2}(x-\mu)^2}z=\left(b+\dfrac{1}{2}(x-\mu)^2\right)^{-1}z\tag{2}
\end{eqnarray}

\begin{eqnarray}
{\rm d}\tau=\dfrac{1}{b+\dfrac{1}{2}(x-\mu)^2}{\rm d}z=\left(b+\dfrac{1}{2}(x-\mu)^2\right)^{-1}{\rm d}z\tag{3}
\end{eqnarray}

(1),(2),(3)より、\tauからzへ変数変換します。

\begin{eqnarray}
p(x|\mu,a,b)&=&\frac{b^a}{\Gamma(a)}\left(\frac{1}{2\pi}\right)^{1/2}\int_0^\infty \left(b+\dfrac{1}{2}(x-\mu)^2\right)^{-a+1/2}z^{a-1/2}\exp(-z)\left(b+\dfrac{1}{2}(x-\mu)^2\right)^{-1}{\rm d}z\\
&=&\frac{b^a}{\Gamma(a)}\left(\frac{1}{2\pi}\right)^{1/2}\left(b+\dfrac{1}{2}(x-\mu)^2\right)^{-a-1/2}\int_0^\infty z^{a-1/2}\exp(-z){\rm d}z\\
&=&\frac{b^a}{\Gamma(a)}\left(\frac{1}{2\pi}\right)^{1/2}\left(b+\dfrac{1}{2}(x-\mu)^2\right)^{-a-1/2}\int_0^\infty z^{a+1/2-1}\exp(-z){\rm d}z\\
&=&\frac{b^a}{\Gamma(a)}\left(\frac{1}{2\pi}\right)^{1/2}\left(b+\dfrac{1}{2}(x-\mu)^2\right)^{-a-1/2}\Gamma\left(a+\frac{1}{2}\right)\tag{4}\\
&=&\frac{\Gamma(a+1/2)}{\Gamma(a)}\left(\frac{1}{2\pi}\right)^{1/2}b^a\left(b\left(1+\dfrac{1}{2b}(x-\mu)^2\right)\right)^{-a-1/2}\\
&=&\frac{\Gamma(a+1/2)}{\Gamma(a)}\left(\frac{1}{2\pi}\right)^{1/2}b^ab^{-a-1/2}\left(1+\dfrac{1}{2b}(x-\mu)^2\right)^{-a-1/2}\\
&=&\frac{\Gamma(a+1/2)}{\Gamma(a)}\left(\frac{1}{2\pi}\right)^{1/2}b^{-1/2}\left(1+\dfrac{1}{2b}(x-\mu)^2\right)^{-a-1/2}\\
&=&\frac{\Gamma(a+1/2)}{\Gamma(a)}\left(\frac{1}{2\pi b}\right)^{1/2}\left(1+\dfrac{1}{2b}(x-\mu)^2\right)^{-a-1/2}\tag{5}
\end{eqnarray}

(4)でガンマ関数の定義\ \Gamma(a)=\displaystyle\int_0^\infty z^{a-1}\exp(-z){\rm d}z\ を用いました。

\nu=2a,\ \lambda=a/bとおくと、以下が成り立ちます。

\begin{eqnarray}
a=\frac{\nu}{2}\tag{6}
\end{eqnarray}

\begin{eqnarray}
b=\frac{a}{\lambda}=\frac{\nu}{2\lambda}\tag{7}
\end{eqnarray}

(6),(7)を式(5)へ代入します。

\begin{eqnarray}
p(x|\mu,a,b)&=&\frac{\Gamma(\nu/2+1/2)}{\Gamma(\nu/2)}\left(\frac{\lambda}{\pi \nu}\right)^{1/2}\left(1+\dfrac{\lambda(x-\mu)^2}{\nu}\right)^{-\nu/2-1/2}\tag{8}
\end{eqnarray}

(8)より、式(2.159)が示せました。

目次へ戻る